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Abstract. We evaluate the propagator by the usual time-sliced manner and use it to compute the
second virial coefficient of an anyon gas interacting through the repulsive potential of the form
g/r2(g > 0). All the cusps for the unpolarized spin-1

2 as well as spinless cases disappear in
the ω → 0 limit, whereω is a frequency of the harmonic oscillator which is introduced as a
regularization method. Asg approaches zero, the result reduces to the noninteracting hard-core
limit.

Since the anyon whose statistics interpolates between boson and fermion at two dimensions
[1–3] was introduced, the main focus, until recently, has been on the free anyon gas, i.e.
noninteraction apart from statistical interacton of the Aharonov–Bohm type. In order to
investigate the statistical properties of a free anyon gas the thermodynamic quantities, such
as the second virial coefficient as a function of statistical parameterα, have been calculated
for both spinless [4,5] and spin-1

2 cases [6]. The second virial coefficient of the spinless case
shows the periodic dependence onα and nonanalytic behaviour at bose points. However, for
the spin-12 case the discontinuities appear at bose points and periodicity is also removed. This
difference comes from the fact that the introduction of spin allows the irregular wavefunction
at origin. Even if no irregular solution is assumed in the spin-1

2 case, the cusps exist at all
integer points. Recently we calculated the second virial coefficient for spinless and spin-1

2 free
anyon gases [7] for various values of the self-adjoint extension [8] parameter. The result for
the spin-12 case exhibits a completely different cusp and discontinuity structure from [6], due
to the different condition for the occurrence of the irregular wavefunction at origin.

Loss and Fu [9] studied the spinless anyon gas interacting with a repulsive potential of
the formg/r2 (g > 0), using a similar regularization procedure to that used in [4]. They
chose the 1/r2-potential, because it does not remove the scale invariance of theory and the
path-integral solution is simply obtained. Furthermore, the probability of the overlap of two
particles is always zero. This property is also valid for the spin-1

2 system with the same two-
particle interaction [10]. They showed that this simple interaction makes the cusps at bose
points smooth for the spinless case.

In this paper, we will compute the second virial coefficient of the spinless and spin-1
2 anyon

gas interacting through this repulsive potential using the harmonic oscillator regularization.
We obtain the same result with [9] for the spinless case. For the spin-1

2 case, it is found that all
the cusps at both boson and fermion points of the second virial coefficient calculated under the
condition that no irregular solution is assumed, become smooth. Asg → 0, the nonanalytic
behaviour of Blumet al [6] is reproduced.
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We begin with the kernel for the anyon system withg/r2 and harmonic oscillator
interactions

K[rf , ri; T ] =
∫
Drei

∫ T
0 dt L(r,ṙ,t) (1)

where

L(r, ṙ, t) = M

2
ṙ2 − αθ̇ − g

r2
− M

2
ω2r2 (2)

is the Lagrangian of the system. Following a similar procedure to [11], one can obtain the
Euclidean kernel as

G[rf , ri; τ ] =
∞∑

m=−∞
eim(θf−θi )Gm[rf , ri; τ ]

Gm[rf , ri; τ ] = Mω

2π sinhωτ
exp

[
−Mω

2

coshωτ

sinhωτ
(r2
i + r2

f )

]
I√

(m+α)2+2gM

(
Mωrirf

sinhωτ

) (3)

whereIν(x) is the modified Bessel function andτ = iT . Then we perform the Laplace
transform to obtain the energy-dependent Green function:

Ĝ[rf , ri;E] =
∞∑

m=−∞
eim(θf−θi )Ĝm[rf , ri;E]

Ĝm[rf , ri;E] = 1

2πωrirf

0
([

1 +
√
(m + α)2 + 2gM +E/ω

]/
2
)

0
(
1 +

√
(m + α)2 + 2gM

)
×W− E

2ω ,
√
(m+α)2+2gM

(Mω[Max(ri, rf )]
2)

×M− E
2ω ,
√
(m+α)2+2gM

(Mω[Min(ri, rf )]
2)

(4)

whereWκ,µ(x) andMκ,µ(x) are the usual Whittaker functions, and Max(x, y) and Min(x, y)
are the maximum and mininum values ofx andy, respectively. From the poles of the Green
function, the bound state spectrum of the system is straightforwardly obtained:

En,m =
(
2n + 1 +

√
(m + α)2 + 2gM

)
ω. (5)

The plot ofE0,0 at gM = 1 is shown in figure 1. The cusps that happened in the absence of
the 1/r2 potential disappear and become smooth. Therefore, by the introduction of a repulsive
potential, we expect that the nonanalytic dependence onα in various thermodynamic quantities
would be suppressed.

Now, we calculate the second virial coefficientB2 of this system. The two-particle partition
functionZ2 is given by

Z2 ≡ Tr exp(−βH2)

= 2Aλ2
T Zrel (6)

where H2 is the two-particle Hamiltonian,β = 1/kT , A is the area of the system,
λT = (2π/kTM)1/2 is the thermal de Broglie wavelength, andZrel is the partition function
in relative coordinates. The second virial coefficient then is

B2(α, T ) = A

2
− 2λ2

T Zrel

= A

2
− 2λ2

T

∑
n,m

e−βEn,m (7)
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Figure 1. The bound state energy as a function ofα whenn, m = 0. Solid curve:gM = 1 case.
Dashed line:g = 0 case in the presence of irregular solution. Dotted line:g = 0 case in the
absence of irregular solution.

whereEn,m is given in equation (5) andM is replaced by 2M. The summation over even (odd)
m’s corresponds to the boson (fermion) statistics. At first, performing the summation overn,
we obtain

B2(α, T ) = A

2
− λ2

T

sinhβω

∑
m

e−β
√
(m+α)2+gMω. (8)

Consider the spinless case by summing only over evenm’s. In order to regularize the
infinite area, we calculateB2(α, T )− B2(α = 0, T ):

B2(α, T )− B2(0, T ) = λ2
T

sinhβω

∑
m=even

[e−β
√
m2+gMω − e−β

√
(m+α)2+gMω]. (9)

The result in theω→ 0 limit is just that of [9] which used the different regularization procedure
proposed in [4].

Next, consider the unpolarized spin-1
2 anyon case. This can be done by averaging over

four possible spin states:

B2(α, T )− B̄2(0, T ) = λ2
T

4 sinhβω

{
3
∑
m=odd

[e−β
√
m2+gMω − e−β

√
(m+α)2+gMω]

+
∑

m=even
[e−β
√
m2+gMω − e−β

√
(m+α)2+gMω]

}
(10)

whereB̄2(0, T ) is the averagedB2(0, T )which cannot be determined but has noα-dependence.
We show theω→ 0 limit of B2(α, T )− B̄2(0, T ) as a function ofα for g = 0, 0.05, 0.1 and
1 in figure 2. Wheng > 0, the second virial coefficient has no cusps for allα as expected.
As g → 0, the previous result [6] is reproduced:|α| − 2α2 for boson point and 3|α| − 2α2

for fermion point†. As a result, the repulsive interaction removes all the cusps at both boson

† Of course, the order of limitsα, g→ 0 is also crucial in this case. See the detailed discussion in [9] for this problem.
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Figure 2. [B2(α, T )− B̄2(0, T )]/λ2
T as a function ofα at variousgM values. Thick solid curve:

gM = 0. Dotted curve:gM = 0.05. Short-dotted curve:gM = 0.1. Thin solid curve:gM = 1.

and fermion points for spin-1
2 case. This is the extension of the spinless case whose cusps at

bosonic points become smooth to the spin-1
2 anyon case.

Even though the 1/r2-potential is adopted to study the interacting anyons due to its
simplicity, a more realistic interaction between anyons should be introduced in order to be
applicable to real physical systems. If we think of anyons as the particles carrying both
magnetic flux and electrical charge, the consideration of Coulomb interaction arises naturally.
We have already calculated the kernel and bound states for the Aharonov–Bohm–Coulomb
system incorporating the self-adjoint extension method into the Green function formalism [12].
Though the simple harmonic oscillator regularization seems to be impossible because of the
difficulty in getting the path-integral solution for the Aharonov–Bohm–Coulomb plus harmonic
oscillator system, the second virial coefficient may be obtained from the appropriate phase shift
method in scattering theory. This problem is now under study.

In conclusion, we found the path-integral kernel for the interacting spin-1
2 anyons with

repulsive potential and harmonic oscillator, and calculated the second virial coefficient using
the partition function obtained by summing the harmonic oscillator bound states. For the
spinless case, the cusps at bose points became smooth as in the result of [9] which used the
regularization procedure by [4]. For unpolarized spin-1

2 anyons, all the cusps at both boson and
fermion points disappeared. The nonanalytic behaviour withα is reproduced wheng→ 0.
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